

Please write clearly in	n block capitals.
Centre number	Candidate number
Surname	
Forename(s)	
Candidate signature	I declare this is my own work.

GCSE MATHEMATICS

Н

Higher Tier Paper 3 Calculator

Monday 10 June 2024

Morning

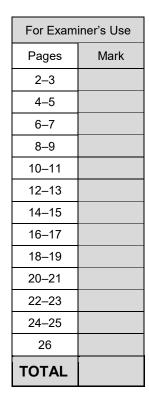
Time allowed: 1 hour 30 minutes

Materials

For this paper you must have:

- a calculator
- mathematical instruments
- the Formulae Sheet (enclosed).

Instructions


- Use black ink or black ball-point pen. Draw diagrams in pencil.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Do all rough work in this book. Cross through any work you do not want to be marked.

Information

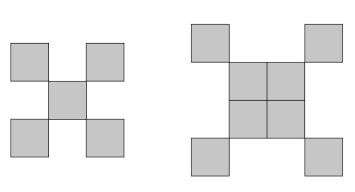
- The marks for questions are shown in brackets.
- The maximum mark for this paper is 80.
- You may ask for more answer paper, graph paper and tracing paper. These must be tagged securely to this answer book.

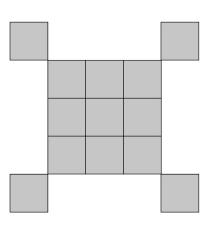
Advice

In all calculations, show clearly how you work out your answer.

Please note that these worked solutions have neither been provided nor approved by AQA and may not necessarily constitute the only possible solutions. Please refer to the original mark schemes for full guidance.

Any writing in blue should be written in the exam.

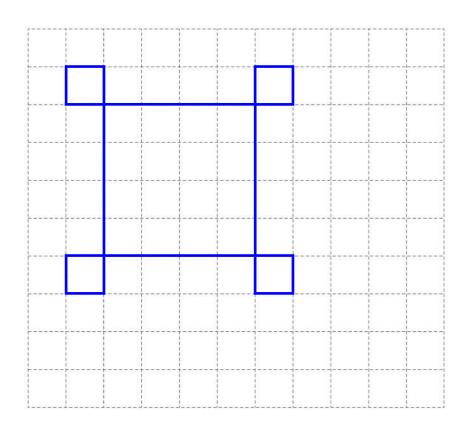

Anything written in green in a rectangle doesn't have to be written in the exam.


If you find any mistakes or have any requests or suggestions, please send an email to curtis@cgmaths.co.uk

.CG Maths.

Answer **all** questions in the spaces provided.

1 Here are the first three Patterns in a sequence made up of small squares.



Pattern 1 Pattern 2 Pattern 3

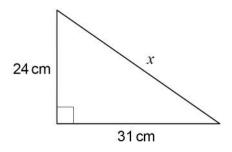
1 (a) On the grid, draw Pattern 4

[1 mark]

The length of the square in the middle increases by 1 between each pattern. The previous one had a length of 3 so this one needs a length of 4. There are always four small squares on the corners of the middle square

1 (b) The expression for the number of small squares in Pattern n is $n^2 + 4$

Work out the least value of n for which the number of small squares is greater than 500


Using table mode on the calculator, set $f(x) = x^2 + 4$. Start: 1. End: 30. Step: 1. This lists out the number of small squares in the first 30 patterns where x is n (the pattern number) and f(x) is the number of small squares

[1 mark]

n = 23

Pattern 22 has 488 small squares then pattern 23 has 533 squares. 23 is the first value of n which has more than 500 squares in its pattern

2

Not drawn accurately

Use Pythagoras' theorem to work out the value of x.

Give your answer as a decimal.

[3 marks]

$$24^2 + 31^2 = x^2 +$$

Pythagoras' Theorem is $a^2 + b^2 = c^2$, where a and b are the shorter sides and c is the longest side. Substituting 24 cm for a, 31 cm for b and x for c

 $x = \sqrt{1537} \leftarrow$

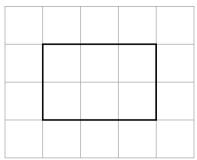
Square rooting both sides gets rid of the power of 2 and finds x

Answer

39.2

cm

5


Do not writ
outside the
hox

3 Rick claims most of the flats in his 8	-floor building are energy efficient.
He samples 45 flats from floors 1 to	5
Oive a reason why this sample may Not all floors were sampled The sample flats as no	not be useful in testing Rick's claim. e is not representative of all of the [1 mark]
flats as no	t all of the floors were sampled
4 $3(x-1) \equiv 3x-3$ is an identity.	
Tick one box.	
	[1 mark]
✓ It is tru	e for all values of x
It is tru	e for some values of <i>x</i>
It is tru	e for no values of <i>x</i>
	alent, so it does not matter what value a different way of writing the left side

5 The front elevation of a cuboid is shown on this centimetre grid.

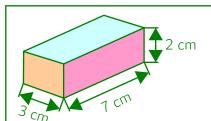
The volume of the cuboid is 42 cm³

Draw the side elevation on this centimetre grid.

[2 marks]

Side elevation

L × 3 × 2 **◆**


Volume of cuboid = length × width × height. Let L be the length. From the front elevation, the width is 3 cm and the height is 2 cm

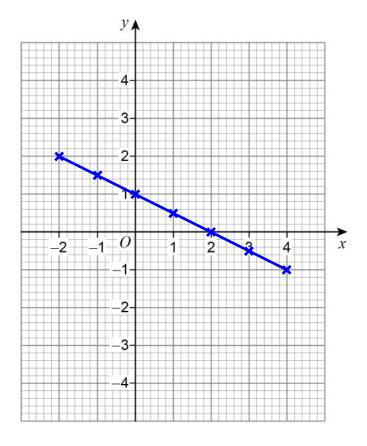
6L = 42 **←**

Simplifying the expression of the volume in terms of L and setting it equal the actual volume of 42 cm³

L = 7 ←

Dividing both sides by 6 finds that the length of the cuboid must be 7 cm

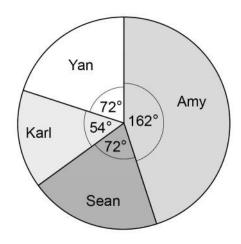
The front elevation is highlighted in orange. The side elevation is highlighted in pink. The plan is highlighted in blue


6 (a)	On Mond	av. Larrs swims 50) metres in 40 seconds at a	a constant speed.	Do not write outside the box
- (-)		day, Larrs swims 1		•	
	Assume h	ne swims at the sa	me constant speed as on M	londay.	
	How man	y minutes does h	e swim for on Tuesday?		
s ^d t ←		Writing the speed	d, distance, time formula tria	ingle	[5 marks]
50 ÷ 40) = 1.25 ←	_	formula triangle finds that s etres by the time of 40 seco	•	_
1.5 × 10	000 ←		m in 1 km so multiplying the ance needs to be in metres a		
1500 ÷	1.25 ←	distance of 1500	formula triangle finds that t metres by the speed of 1.25 The unit of speed involved s	5 m/s works out that hi	s time on Tuesday
1200 ÷	60 •		onds in 1 minutes so dividing 60 converts it to 20 minute	_	
6 (b)	In fact. or	Answer	20 vims at a slower constant sp	minutes Deed than on Monday.	
(2)		•	the number of minutes he	•	
		correct box.		,	[1 mark]
It is less than the answer to part (a)					
			It is the same as the a	nswer to part (a)	
		/	It is greater than the ar	nswer to part (a)	
			It is not possible to say	/	
	Tir	ne = distance ÷ spe	eed. Dividing by less speed w	vill result in a greater tin	ne

7 Draw the graph of $y = 1 - \frac{1}{2}x$ for values of x from -2 to 4

[3 marks]

Using table mode on the calculator, set f(x) = 1 - 1/2 x. Start: -2. End: 4. Step: 1. This creates a table of values for the values of x from -2 to 4. y is the f(x) values. Then plotting the points and connecting them with a straight line


9

8 Four people are taking part in a television talent show.

Here are Amy's marks from the 6 judges.

The pie chart represents the phone vote.

Amy's total score is found by

 $4 \times$ the **mean** of her marks

+

her **percentage** of the phone vote

Work out Amy's total score.

8 + 9 + 9 + 6 + 9 + 10 Adding Amy's marks from the judges works out that the total of the marks from the judges is 51

51 ÷ 6

Mean = total ÷ number so dividing the total 51 by the 6 judges works out that the mean of her marks is 8.5

[4 marks]

 $4 \times 8.5 = 34$ This works out that $4 \times$ the mean of her marks is 34

$$\frac{162}{360} \times 100$$

There are 360° in total in a pie chart. So putting the 162° Amy got over the 360° expresses her fraction of the phone vote. Multiplying this by 100 converts it into 45%

Adding her percentage of the phone vote to 4 × the mean of her marks works out that her total score is 79

Answer

79

Turn over for the next question

9 Town A has

a population of 84 000 an area of 7 **square miles**.

Town B has a population density of 4695 people per square kilometre.

Population density =
$$\frac{\text{population}}{\text{area}}$$

Which town has the greater population density?

Use 1 square mile = 2.6 square kilometres Tick a box.

Show working to support your answer.

 7×2.6 This converts the 7 square miles to 18.2 square kilometres $\frac{84000}{18.2} = 4615.4$ This works out that the population density of town A is 4615.4 people per square kilometre

4695 is greater than 4615.4

[3 marks]

10 On a biased dice,

P(lands on 6) = 0.38

This dice is rolled 150 times.

How many times would you expect the dice **not** to land on 6?

[3 marks]

Do not write outside the

box

1 - 0.38
It is certain to land on either 6 or not 6. The probability of certain is 1. So subtracting the probability of landing on 6 from 1 works out that the probability of not landing on 6 is 0.62

150 × 0.62
Multiplying the 150 rolls by the probability of not landing on 6 works out an estimated number of times it will land on 6

93 Answer

Turn over for the next question

Write a number in each box to make the calculations correct.

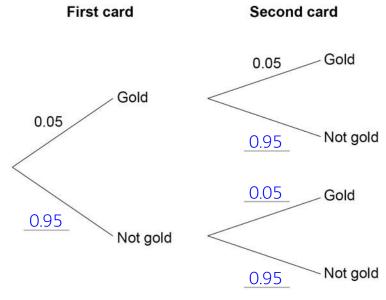
[2 marks]

On the left, the division must be done first. $10 \div -2 = -5$. Then -5 must be multiplied by -1 to get 5

$$\frac{1}{3}$$
 × 4π × 6 = 8π

The multiplication on the left can be done in any order. So $1/3 \times 6 = 2$ then 2 must be multiplied by 4π to get 8π

12 Cards are either gold or not gold.


P(gold) = 0.05

Harim chooses a card at random and replaces it.

He then chooses a second card.

12 (a) Complete the tree diagram.

[2 marks]

1 - 0.05

It is certain to be either gold or not gold. The probability of certain is 1. So subtracting the probability of gold from 1 works out that the probability of not gold is 0.95

12 (b) What is the probability that **at least one** of Harim's cards is gold?

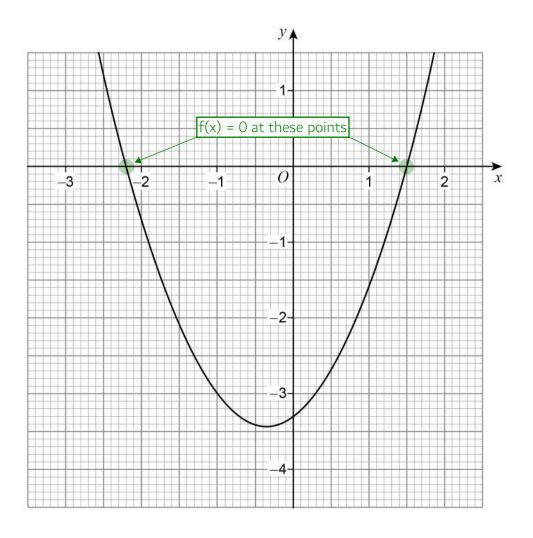
0.95 × 0.95 Not gold AND not gold. AND means to multiply the probabilities.

The probability of both cards not being gold is 0.9025

[3 marks]

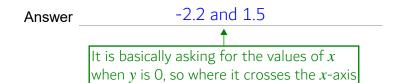
It is certain that both will be not gold or that at least one will be gold.

1 - 0.9025 ←


The probability of certain is 1. So subtracting the probability of both not being gold from 1 leaves the probability of at least one being gold

Answer 0.0975

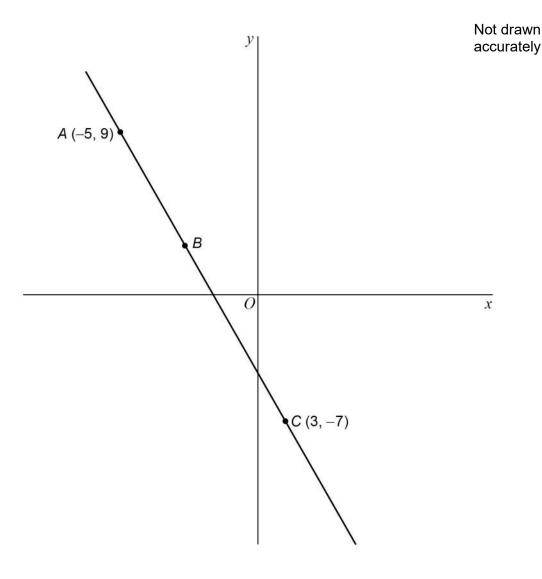
7



Here is a quadratic graph with equation y = f(x)

Write down the roots of the equation f(x) = 0

[2 marks]

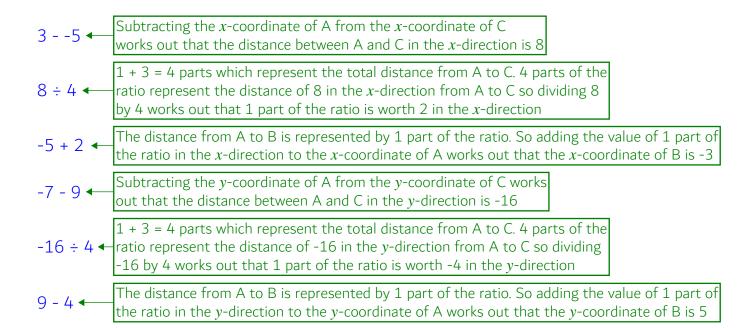

Do not write outside the 14 Not drawn accurately *h* = 45° a:b=7:3and x: y = 4:1and Show that a: y = 5: 2[3 marks] b is represented by 3 parts of the ratio a : b. So dividing 45° by 3 works out that 1 part of this ratio is worth 15° Multiplying the value of 1 part of the a:b ratio by 7 works out 15 × 7 **◆** that the 7 parts which represent a is 105°. So angle a is 105° 105 + 45 ← Adding angles a and b gives a total of 150 $^{\circ}$ There are 360° in total in a four-sided shape. Subtracting the total of **360 - 150 ←** angles a and b from 360° works out that the total of angles x and y is 210° 4 + 1 = 5 parts in total in the x : y ratio. These 5 parts represent the 210° so dividing 210° by 5 works out that 1 part of the x: y210 ÷ 5 **←** ratio is worth 42°. Angle y must be 42° as it is 1 part of this ratio Angle a is 105° and angle y is 42°. Writing this as a ratio **105** : 42 **←** The ratio of a: y simplifies to 5: 2. Ratios simplify in a similar 5:2 way to fractions and the calculator simplifies 105/42 to 5/2

Turn over ▶

box

15 A straight line passes through points A (-5, 9), B and C (3, -7).

15 (a) AB : BC = 1 : 3


Work out the coordinates of point *B*.

[3 marks]

See next page for method

Answer (_____3___ , ____5___)

.CG Maths.

[4 marks]

15 (b) Work out the equation of the line perpendicular to *AC* that passes through *C*.

Gradient = (change in y)/(change in x). The change in y from A to C is -16 and the change in x from A to C is 8. So the gradient of AC is -2

-1 ÷ -2 ← Doing the negative reciprocal (-1 divided by) the gradient of AC works out that the gradient of the line perpendicular to AC is 1/2

The general equation of a straight line is y = mx + c, where m is the gradient and c is the y-intercept. Substituting in the y-coordinate of C for y, 1/2 for m and the x-coordinate of C for x

c = -8.5 Subtracting $1/2 \times 3$ from both sides gets c on its own

Answer $y = \frac{1}{2}x - 8.5$

The general equation of a straight line is y = mx + c, where m is the gradient and c is the y-intercept. Substituting 1/2 for m -8.5 for c

Turn over for the next question

7

16 Jing rolls a fair six-sided dice 72 times.

	1	2	3	4	5	6
Frequency	16	11	10	8	14	13

Is the relative frequency of rolling a 5 greater than the theoretical probability? Tick a box.

Yes

No

Give a reason for your answer.

[3 marks]

$$\frac{14}{72} \times 100 = 19.4\%$$
 The rewere

 $\frac{14}{72} \times 100 = 19.4\%$ The relative frequency is 14/72 as 14 out of the 72 rolls were 5. Multiplying this by 100 converts it to a percentage

$$\frac{1}{6} \times 100 = 16.6\%$$

 $\frac{1}{6} \times 100 = 16.6\%$ The theoretical probability is 1/6 as 1 out of the 6 faces of the dice are a 5 and it is a fair dice (meaning that all of the outcomes are equally as likely). Multiplying this by 100 converts it to a percentage

The percentage is greater for the relative frequency

17 (a) a and b are different prime numbers.

$$a^3 \times b^2 = 200$$

Work out the value of $a^4 \times b$

[3 marks]

$$200 = 2^3 \times 5^2$$

200 = $2^3 \times 5^2$ Expressing 200 as a product of its prime factors using the calculator works out that a must be 2 and b must be 5

2⁴ × 5 Substituting 2 for a and 5 for b in $a^4 \times b$

Answer 80

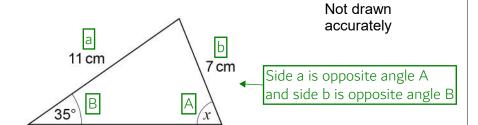
17 (b) c and d are different prime numbers.

Circle the equation for which $c^4 \times d^2 \times e$ is a cube number.

[1 mark]

$$e = cd$$

$$e = c^2 d$$


$$e = c^2 d^2$$

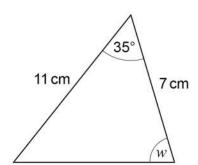
$$e = c^2 d^2 \qquad \qquad e = c^3 d^3$$

Substituting e for c^2d gives $c^4 \times d^2 \times c^2d$, which simplifies to c^6d^3 . This is a cube number as cube rooting it (by dividing the powers by 3) gives c^2d , which must be a whole number. Substituting in the other options would give fractional powers of c and d when they are divided by 3, which may not give a whole number

Turn over for the next question

Here is triangle A.

18 (a) Use the sine rule to show that $x = 64^{\circ}$ to the nearest degree.


[3 marks]

$$\frac{\sin x}{11} = \frac{\sin 35}{7}$$
 $4 = \frac{\sin A}{a} = \frac{\sin B}{b}$ Using the sine rule with the angles as numerators and substituting in the values as labelled on the diagram

 $\sin x = 0.9...$ Multiplying both sides by 11 to eliminate it as the denominator on the left

x = 64.3... Doing the inverse sin of both sides to eliminate the sin on the left

18 (b) Here is triangle B.

Not drawn accurately

Anna thinks that w must be 64° to the nearest degree.

She says,

"This is because triangle B has two sides and one angle the same as triangle A."

Without further calculation, is she correct?

Tick a box.

No

Give a reason for your answer.

[1 mark]

7 cm is not opposite 35° ← Meaning that the calculation done before no longer works. Side b is opposite angle B

Turn over for the next question

4

f(x) = x - 3 g(x) = 4x - 719

Do not write outside the box

19 (a) Work out the value of fg(6)

[2 marks]

 $4 \times 6 - 7$ Substituting 6 for x in g(x) works out that g(6) = 17

17 - 3 \leftarrow Substituting the value of g(6) for x in f(x) works out that fg(6) = 14

14 Answer

19 (b) Solve $(f(x))^2 = g(x)$

[4 marks]

 $(x-3)^2$ Expressing $(f(x))^2$

Expanding the square bracket by squaring the first term, doubling the product of the two terms, squaring the last term. Setting this equal to g(x) $x^2 - 10x + 16 = 0$ Putting into the quadratic form $ax^2 + bx + c = 0$ by subtracting 4x from both sides and adding 7 to both sides

 $\frac{--10 \pm \sqrt{(-10)^2 - 4 \times 1 \times 16}}{2 \times 1} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ Solving using the quadratic formula. a = 1, b = -10, c = 16

Answer x = 8 and x = 2

20 P, Q, and R have positive values.

P is directly proportional to Q

When
$$P = 8$$
, $Q = 2$

R is inversely proportional to Q^2

When
$$R = 10$$
, $Q = 3$

Work out the value of R when P = 0.5

[5 marks]

Do not write outside the

box

 $k = 8 \div 2$ Dividing both sides by Q to make k the subject and substituting 8 for P and 2 for Q. So k = 4

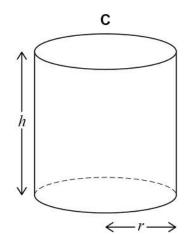
$$P = 4Q$$
 Substituting 4 for k in the equation

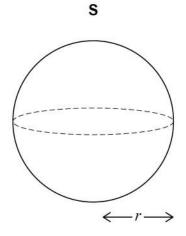
$$R = \frac{C}{Q^2}$$
 Writing R is inversely proportional to Q^2 as an equation where c is a constant which needs to be found

$$c = 10 \times 3^2$$
 Multiplying both sides by Q^2 to make c the subject and substituting 10 for R and 3 for Q. So $c = 90$

$$R = \frac{90}{O^2}$$
 Substituting 90 for c in the equation

$$Q = 0.5 \div 4$$
 Dividing both sides of the P = 4Q equation by 4 and substituting 0.5 for P finds that Q = 0.125 when P = 0.5


$$R = \frac{90}{0.125^2}$$
 Substituting 0.125 for Q in the R = 90/Q² equation to find R when P = 0.5

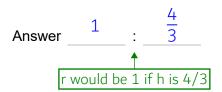

Turn over for the next question

11

21 A cylinder, C, and a sphere, S, each have radius rC has height h

Volume of a sphere = $\frac{4}{3}\pi r^3$ where r is the radius

volume of C = volume of S21 (a)


Work out the ratio r: h

You must show your working.

[3 marks]

The cylinder can be treated like a prism so volume = area of cross section × length. The $\pi r^2 h = \frac{4}{3} \pi r^3 \leftarrow \text{cross section is the circle and area of circle} = \pi r^2. \text{ The length is h. So } \pi r^2 h \text{ is the volume of C. Setting this equal to the volume of S, which is expressed using the formula given$

$$h = \frac{4}{3}r$$
 Dividing both sides by πr^2

21 (b) A different cylinder has radius 3r and height 2h.

How many times bigger is the volume of this cylinder than the volume of C?

[2 marks]

The cylinder can be treated like a prism so volume = area of cross section × length. The cross section is the circle and area of circle = π × radius². The length is the height, 2h

$$\pi \times 9r^2 \times 2h$$
 Simplifying $18\pi r^2 h$ Simplifying

Answer ______

The volume of C was πr²h and the volume of the different is 18πr²h

22 Fatima is choosing a 4-digit code.

Each digit is a whole number from 0 to 9

She decides

all her digits will be odd numbers no digits will be repeated.

How many different codes can she make?

[2 marks]

1, 3, 5, 7, 9
$$\leftarrow$$
 Listing the possible digits

Using the product rule for counting. There are 5 possibilities for the first digit. Given that 1 is already chosen, there are 4 possibilities for the second digit. Given that 2 are already chosen, there are 3 possibilities for the third digit. Given that 3 are already chosen, there are 2 possibilities for the fourth digit

Answer 120

7

23 Quadrilateral ABCD is reflected in edge BC.

> How many of the vertices are invariant? Circle your answer.

> > [1 mark]

1

Both vertices B and C will be invariant as they will not change

 $2x^2 - 12x + 7$ in the form $d(x + e)^2 + f$ 24 where d, e and f are integers.

[3 marks]

$$2(x^2 - 6x) + 7 \leftarrow$$

 $2(x^2 - 6x) + 7$ Bringing 2 out as a factor on the first two terms

$$2(x-3)^2 + 7 - 2(-3)^2$$

 $2(x-3)^2 + 7 - 2(-3)^2$ Completing the square by halving the coefficient of x, putting this in a bracket with x and squaring the bracket. Subtracting $2(-3)^2$ from the end

Answer

 $2(x-3)^2-11$

END OF QUESTIONS