

Please write clearly in	n block capitals.
Centre number	Candidate number
Surname	
Forename(s)	
Candidate signature	I declare this is my own work
	I declare this is my own work.

GCSE MATHEMATICS

H

Higher Tier

Paper 1 Non-Calculator

Tuesday 19 May 2020

Morning

Time allowed: 1 hour 30 minutes

Materials

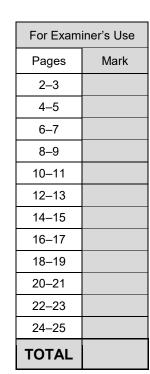
For this paper you must have:

• mathematical instruments.

You must **not** use a calculator.

Instructions

- Use black ink or black ball-point pen. Draw diagrams in pencil.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Do all rough work in this book. Cross through any work you do not want to be marked.


Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 80.
- You may ask for more answer paper, graph paper and tracing paper. These must be tagged securely to this answer book.

Advice

In all calculations, show clearly how you work out your answer.

Please note that these worked solutions have neither been provided nor approved by AQA and may not necessarily constitute the only possible solutions. Please refer to the original mark schemes for full guidance.

Any writing in blue indicates what must be written in the exam.

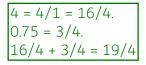
Anything written in green in a rectangle doesn't have to be written in the exam.

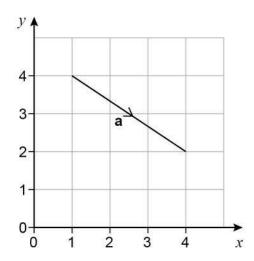
If you find any mistakes or have any requests or suggestions, please send an email to curtis@cgmaths.co.uk

.CG Maths.

Answer all questions in the spaces provided.

1 Circle the fraction that is equivalent to 4.75


[1 mark]


 $\frac{15}{4}$

 $\left(\frac{19}{4}\right)$

<u>21</u> 4 $\frac{23}{4}$

2 Here is vector a.

Circle the column vector that represents a.

[1 mark]

 $\binom{3}{2}$

 $\begin{pmatrix} -3 \\ 2 \end{pmatrix}$

 $\begin{pmatrix} -3 \\ -2 \end{pmatrix}$

3 to the right, which is 3 in the x direction. 2 down, which is -2 in the y direction

Which one of these is a square number **and** a cube number? Circle your answer.

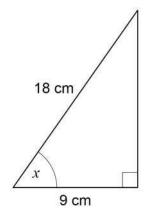
[1 mark]

100

1000

10000

1000000


1000000 = 10⁶. The power of 6 can be divided by 2 and by 3 so therefore can be square rooted and cube rooted

Circle the reciprocal of $\frac{5}{6}$ 4

[1 mark]

Flipping the fraction does the reciprocal

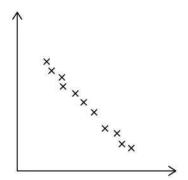
5 Use trigonometry to work out the size of angle *x*.

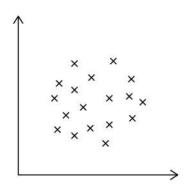
Not drawn accurately

[2 marks]

Using right-angled trigonometry. Ticking A as the 9 cm is the adjacent and ticking H as the 18 cm is the hypotenuse. There are two ticks on the CAH formula triangle so this one can be used

Covering C in the CAH formula triangle finds that cos of the angle = adjacent/hypotenuse. Putting the 9 over the 18 and simplifying by dividing both the numerator and denominator by 9 to get 1/2


O 30 45 60 90 Listing the angles of 0, 30, 45, 60, 90 degrees. Listing 4, 3, 2, 1, 0 under these for the cos values. Square rooting the 1 then putting the result over 2 gives 1/2 so cos60 = 1/2


Answer 60 degrees

6 A and B are scatter graphs.

Graph A

What type of correlation is shown by each graph? Choose from

Weak positive

Strong positive

Weak negative

Strong negative

No correlation

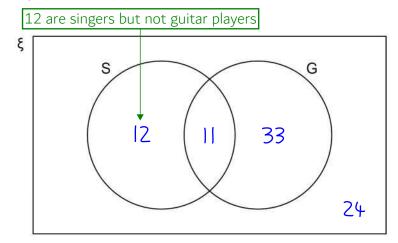
[2 marks]

Graph A	Strong negative	

Graph B No correlation

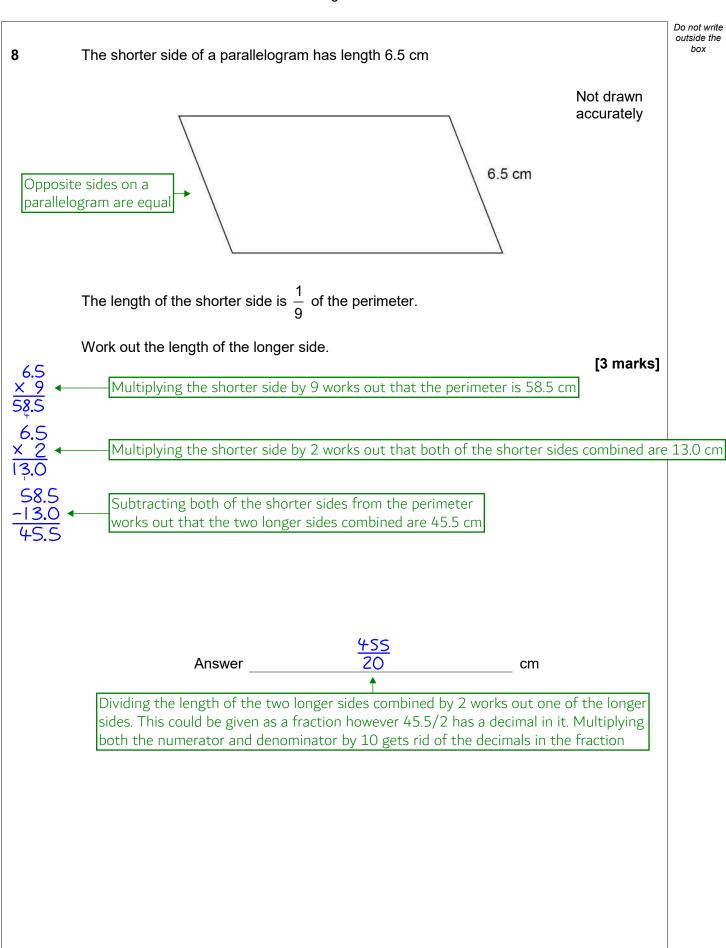
If drawing a line of best fit, A would have a negative gradient and all the points would be quite close to it for Graph A so it has strong negative correlation.

Graph B has no correlation as a suitable line of best fit cannot be drawn


.CG Maths.

- 7 Here is some information about 80 people who play in bands.
 - 12 are singers but not guitar players.
 - 30% are neither a singer nor a guitar player.
 - $\frac{1}{4}$ of the guitar players are also singers.

Complete this Venn diagram to represent the information.


[4 marks]

- $\xi = 80$ people who play in bands
- S = singers
- G = guitar players

- 80÷ IO ← 10% as a fraction is 10/100, which simplifies to 1/10. So dividing the 80 by 10 works out that 10% of 80 is 8
- Multiplying the value of 10% of 80 by 3 works out that 30% of 80 is 24. This many are neither a singer nor a guitar player
- Adding the 12 and 24 so far on the Venn diagram works out that 36 have been accounted for so far
- Subtracting this 36 from the 80 people works out that 44 are guitar players
- Ψ4÷Ψ ← Dividing the 44 guitar players by 4 works out that 1/4 of them is 11 who are also singers
- Subtracting the 11 who are both singers and guitar players from the 44 guitar players works out that 33 are guitar players but not singers

9 (a) All the terms of a geometric progression are positive.	Do not v outside box
The second and fourth terms are shown.	
4 16	
Work out the first and third terms.	
Geometric means that each term is multiplied by the same amount to get the next term. Let x be the amount it multiplies by each time. 4 multiplied by x twice gives 16. Writing this as an equation $x^2 = 4 \text{Dividing both sides by 4 to get } x^2 \text{ on its own}$ Square rooting both sides finds that x is 2. There is no need to do the negative square root as x must be positive if all the terms are	marks]
$x^2 = 4$ Dividing both sides by 4 to get x^2 on its own	
Square rooting both sides finds that x is 2. There is no need to do the negative square root as x must be positive if all the terms are positive. So each term is multiplied by 2 to get to the next term	
First term	
o go from the second term to the first term, the 4 must be divided by 2 as this is the opposite of r	 multiplying by
Third term 8	
To go from the second term to the third term, the 4 must be multiplied by	
9 (b) The first two terms of an arithmetic progression are shown. The sequence is arithmetic so increases by the samount between each term. It increases by 4p for specific progression are shown. The sequence is arithmetic so increases by 4p for so must increase by 4p again to 9p for the the sequence is arithmetic so increases by 4p for the the sequence is arithmetic so increases by 4p for the the sequence is arithmetic so increases by 4p for the the sequence is arithmetic so increases by 4p for the the sequence is arithmetic so increases by 4p for the the sequence is arithmetic so increases by 4p for the the sequence is arithmetic so increases by 4p for the the sequence is arithmetic so increases by 4p for the sequence is arithmetic so increases by 4p for the the sequence is arithmetic so increases by 4p for the sequence is arithmetic so increase by 4p for the sequence is arithmet	same rom p to nird term
The sum of the first three terms is 90	
Work out the value of p . 15 $P = 90$ The sum of p, 5p and 9p is 15p. This must be equal to the 90	marks]
15,30,45,60,75,90 ← Dividing both sides by 15 gives p. Counting up in 15s until i	t reaches 90
Answer 6	
6 lots of 15 go into 90	
	8

.CG Maths.

The cost of a holiday is £2400 Rana pays a deposit followed by monthly payments, in the ratio	
deposit : total of the monthly payments = 3 : 5	
She makes 6 equal monthly payments.	
Work out her monthly payment.	
Adding the 3 and 5 parts in the ratio works out that there are 8 parts in total in the ratio which represent the £2400	
2400÷8 ← Dividing the £2400 by the 8 parts which represent it works out that 1 part of the ratio is worth £300	
5 parts represent the total of the monthly payments so multiplying the value of 1 part by 5 works out that the total of the monthly payments is £1500	
Dividing the total of the monthly payments by the 6 months gives the monthly payment	t
Answer £	

[2 marks]

11 As a decimal
$$\frac{11}{40} = 0.275$$

Work out $\frac{33}{400}$ as a decimal.

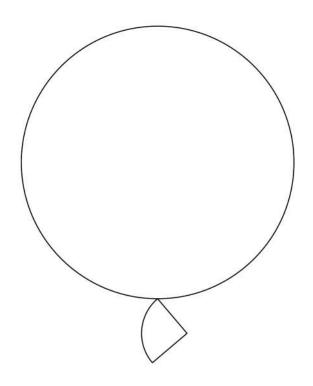
O.275 X 3 O.825

The 11 has been multiplied by 3 to get 33 so first multiplying the decimal by 3

0.0825 Answer

Dividing the 0.825 by 10 as the 40 has been multiplied by 10 to get 400. Having a denominator 10 times the size is equivalent to dividing by 10

Turn over for the next question


12 Two wire shapes make an earring.

The shapes are

a circle with radius 21 mm

and

a quarter circle.

Not drawn accurately

radius of circle : radius of quarter circle = 7:2

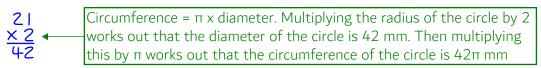
12 (a) Show that the radius of the quarter circle is 6 mm

[1 mark]

7 parts of the ratio represent the radius of the circle which is 21 mm. So dividing the radius of the circle by 7 works out that 1 part of the ratio is worth 3 mm

3×2=6

Multiplying the value of 1 part of the ratio by 2 shows that the 2 parts which represents the radius of the quarter circle is 6 mm



.CG Maths.

12 (b) Work out the **total** length of the wire in the earring.

Give your answer in the form $a\pi + b$ where a and b are integers.

[4 marks]

Circumference = π x diameter. Multiplying the radius of the quarter circle by 2 works out that the diameter of the quarter circle is 12 mm. Then multiplying this by π works out that the circumference of the quarter circle, if it was a whole circle, is 12π mm

12π ÷ 4 Dividing this 12π mm by 4 as it is a quarter circle works out that the arc length of the quarter circle is 3π mm

Adding the circumference of the circle and the arc length of the quarter circle works out that the wire used in the circle and the wire used for the curve of the quarter circle is 45π mm

6+6 ← Adding 2 lots of the radius works out that the straight pieces of wire are 12 mm

Adding the length of the curved lengths of the wire and the straight lengths of the wire. Leaving the 12 separate to the 45π as this is the form it asked for

Turn over for the next question

5

13 (a) s and t are positive integers.

(x + s)(x - t) is expanded and simplified.

The answer is $x^2 + kx - 40$ where k is a positive integer.

Work out the **smallest** possible value of k.

[2 marks]

$$x^2-tx+Sx-St$$
 Expanding the brackets

 $x^2+(s-t)x-st$ Factorising the two middle x terms to express in the same form as the answer

2,20 By equating the coefficients of the expansion and the answer, st = 40 and s - t = k.

Answer As k is positive, s must be larger than t. The smallest positive value of s - t is 8 - 5 = 3

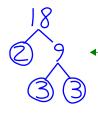
13 (b) Faisal tries to solve (x+2)(x-7) = 0

Here is his working.

$$(x+2) = 0$$
 or $(x-7) = 0$
Answer $x = 2$ or $x = 7$

Give a reason why his answer is wrong.

[1 mark]


x = -2 Subtracting 2 from both sides in the equation x + 2 = 0 gives x = -2, not x = 2

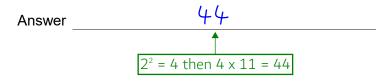
14 (a)
$$c = 2^{10} \times 3 \times 5^6$$

Work out 18c.

Give your answer as a product of prime factors in index form.

[2 marks]

Finding 18 as a product of primes by doing a factor tree. So $18 = 2 \times 3^2$


14 (b) Work out
$$\sqrt[3]{\frac{2^7 \times 11^3}{2}}$$

Give your answer as an integer.

$$\sqrt[3]{2^6 \times 1}^3 \leftarrow a^x/a^y = a^{x-y} \text{ so } 2^7/2 = 2^6$$

$$2^2 \times 11 \leftarrow \text{Cube rooting divides the powers by 3}$$

[2 marks]

7

15
$$3x = \frac{1}{2}y$$

Circle the ratio x: y

[1 mark]

- 6:1
- 1:6
- 3:2
- 2:3

Multiplying both sides by 2 eliminates the fraction and gives 6x = y. So x could be 1 and y could be 6

16 A sequence of numbers is formed by the iterative process

$$u_{n+1} = \frac{4}{u_n - 1} \qquad u_1 = 9$$

Work out the values of u_2 and u_3

[2 marks]

9 - 1	<u> </u>	to
1	2 .	Su

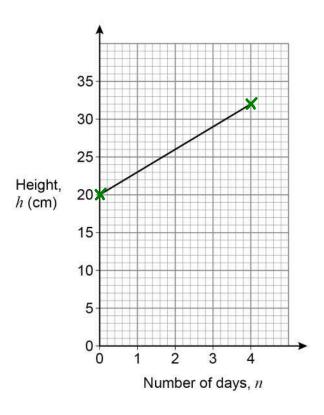
Substituting the value of u_1 for u_n finds u_2 . 4/8 can be simplified to 1/2 by dividing both the numerator and denominator by 4

 $\frac{1}{2} - \frac{2}{2}$

Substituting the value of u_2 for u_n finds u_3 . Dealing with the denominator. 1/2 - 1. The 1 is changed to 2/2 so they can be subtracted. So the denominator is -1/2

4 ÷ − | Doir

Doing the 4 divided by the denominator of -1/2


4x-2 +

To divide by a fraction: keep the first part, change the division to a multiply, flip the fraction. -1/2 becomes 2/-1, which is equal to -2

$$u_2 = \frac{1}{2}$$

Jim buys a plant of height 20 cm

The graph shows how the height of the plant changes during the next 4 days.

Work out a formula for h in terms of n.

[3 marks]

<u>12</u> ↓

Gradient = (change in y)/(change in x). From the point on the left to the point on the right, y has changed by 12 and x has changed by 4. So the gradient is 3

Answer h=3n+20

The general equation of a straight line is y = mx + c, where m is the gradient and c is the y-intercept. The gradient is 3 and the y-intercept (the y-coordinate where it crosses the y-axis) is 20. Writing h instead of y as h is on the y-axis and n instead of x as n is on the x-axis

6

18 Solve the simultaneous equations

$$2x + 4y = -9$$
 First equation
$$2y = 4x - 7$$
 Second equation

[4 marks]

$$2x+8x-14=-9$$
 Substituting 8x - 14 for 4y in the first equation

$$0x = 5$$

$$2x + 8x = 10x. Adding 14 to both sides to get the x term on its own$$

$$x = \frac{5}{10}$$
Dividing both sides by 10 to get x on its own. Dividing both the numerator and denominator of 5/10 by 5 simplifies it to 1/2

$$2y=2-7$$
 ← Substituting 1/2 for x in the second equation. $4 \times 1/2 = 2$

$$x = \frac{\frac{1}{2}}{2} \qquad y = \frac{-\frac{5}{2}}{2}$$

2 - 7 = -5. Then dividing both sides by 2 gets y on its own

19 Circle the expression that is equivalent to $\frac{x}{5} + \frac{x}{10}$

Do not write outside the box

[1 mark]

$$\left(\frac{3x}{10}\right)$$

$$\frac{2x}{15}$$

$$\frac{x}{25}$$

$$\frac{x^2}{50}$$

 $\frac{2x}{10} + \frac{x}{10}$

Multiplying both the numerator and denominator of x/5 by 2 gives 2x/10. The denominators are now the same so the fractions can be added. 2x + x = 3x. The denominator stays as 10

20 (a) Write down the value of 7^0

[1 mark]

Answer

Anything to the power of 0 is 1

20 (b) Work out the value of $32^{-\frac{3}{5}}$

[2 marks]

Answer ____

The denominator of 5 as a power means 5th root. $2^5 = 32$ so the 5th root of 32 is 2. The numerator of 3 as a power means to cube. $2^3 = 8$.

The negative as a power means reciprocal. The reciprocal of 8 is 1/8

Turn over for the next question

8

Do not write outside the
outside the

- 21 Write these numbers in order of size.
 - 15.6
- $3\sqrt{23}$ 2.1⁴ $\frac{47}{3}$

Start with the smallest.

$$3 + 7.0$$
 Dividing the numerator by the denominator converts 47/3 to a decimal

[2 marks]

box

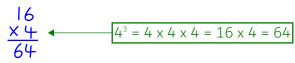
Smallest
$$3\sqrt{23} \leftarrow \sqrt{25} = 5 \text{ so } \sqrt{23} < 5 \text{ so } 3\sqrt{23} < 15$$

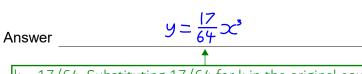
Largest
$$2.1^4 \leftarrow 2^4 = 16 \text{ so } 2.1^4 > 16$$

22 (a) y is directly proportional to x^3

$$y = 17$$
 when $x = 4$

Work out an equation connecting y and x.


[3 marks]


$$y=kx^3$$

Writing the proportion as an equation. x³ can be multiplied by anything and still be directly proportional to y. So using k to represent what x³ is multiplied by

$$K = \frac{17}{4^3} \longleftarrow$$

 $K = \frac{17}{4^3}$ Rearranged to get k on its own by dividing both sides by x^3 and substituted in the values of y and x given

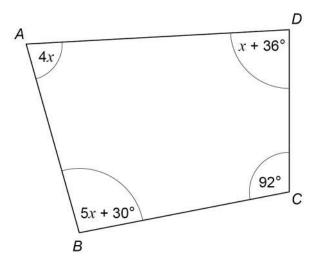
k = 17/64. Substituting 17/64 for k in the original equation

m is inversely proportional to \sqrt{r} 22 (b)

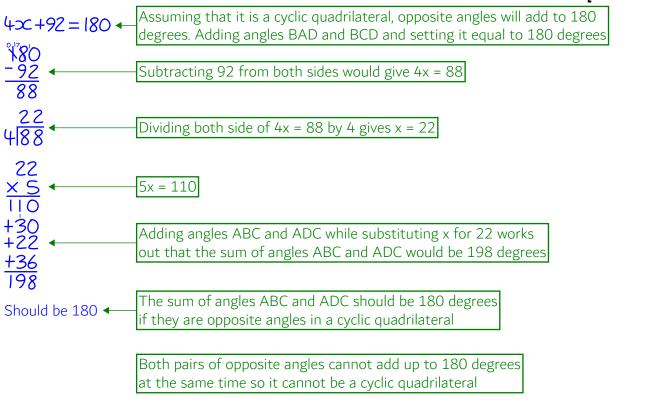
The value of r is multiplied by 4

Circle what happens to the value of m.

[1 mark]


Inversely proportional means that the opposite effect happens to m, so if r is multiplied m will be divided. As r is square rooted, the square root of 4 will be what m is divided by. $\sqrt{4} = 2$

Turn over for the next question


23 ABCD is a quadrilateral.

Prove that ABCD is **not** a cyclic quadrilateral.

[4 marks]

.CG Maths.

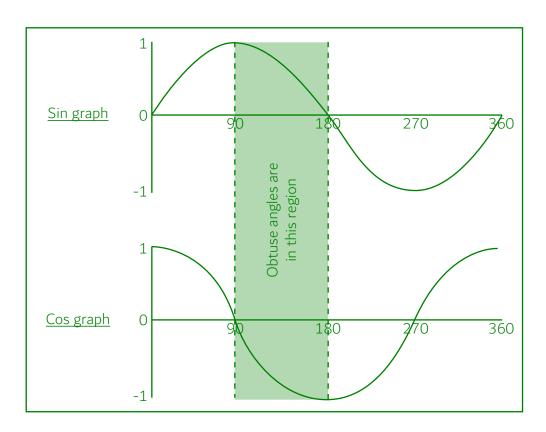
y is an obtuse angle.

Which statement is true?

Tick one box.

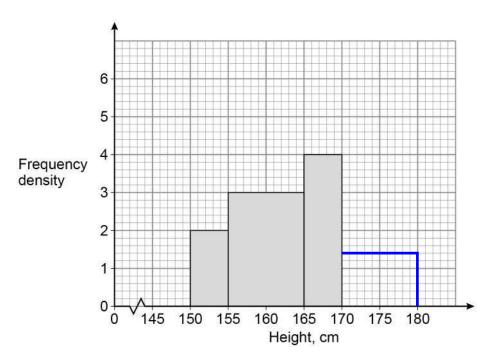
[1 mark]

 $\sin y > 0$ and $\cos y > 0$


 $\sin y > 0$ and $\cos y < 0$

 $\sin y < 0$ and $\cos y > 0$

 $\sin y < 0$ and $\cos y < 0$


Turn over for the next question

5

A histogram is drawn to represent the heights of a sample of women.

Three of the four bars are shown.

The bar for $170 \text{ cm} \leq \text{height} < 180 \text{ cm}$ is missing.

There are 74 women in the sample.

Complete the histogram.

[4 marks]

Frequer	cy is the area of each bar on the histogram. Area of rectangle = base x height
5×2=10 ←	The base of the first bar is 5. The height of the first bar is 2. Multiplying these together gives an area of 10, which is the frequency represented by the first bar
10×3=30 ←	The base of the first bar is 10. The height of the first bar is 3. Multiplying these together gives an area of 30, which is the frequency represented by the second bar
5×4=20 ←	The base of the third bar is 5. The height of the third bar is 4. Multiplying these together gives an area of 20, which is the frequency represented by the third bar
10+30+20 +	Adding the frequency of the first, second and third bar works out that a frequency of 60 women has been represented on the histogram so far
74-60 •	Subtracting the 60 women represented so far from the total 74 women works out that the fourth bar must represent 14 women
14÷10 ←	Height = area of rectangle ÷ base. The area of the fourth bar must be 14 and the base is 10. So the height of the fourth bar is 1.4

26 (a) Show that $\frac{14}{\sqrt{7}}$ can be written in the form $a\sqrt{b}$ where a and b are integers.

[2 marks]

$$\frac{14}{17} \times \frac{17}{17}$$
 Rationalising the denominator

Multiplying the fractions by multiplying the numerators and denominators.
$$\sqrt{7} \times \sqrt{7} = 7$$

26 (b) Work out
$$2\sqrt{10} \times \sqrt{80} \times \sqrt{18}$$

Give your answer as an integer.

[3 marks]

Simplifying
$$\sqrt[80]$$
 by using $\sqrt[3b] = \sqrt[3] x \sqrt[3b]$ to split it into two different square roots, one of which is the square root of a square number
$$= \sqrt{4} \times \sqrt{4} \times \sqrt{5}$$
 Simplifying $\sqrt{20}$ by using $\sqrt[3b] = \sqrt[3a] x \sqrt[3b]$ to split it into two different square roots, one of which is the square root of a square number
$$= 4\sqrt{5}$$
 Simplifying $\sqrt{18}$ by using $\sqrt[3b] = \sqrt[3a] x \sqrt[3b]$ to split it into two different square roots, one of which is the square root of a square number
$$= 3\sqrt{2}$$
 Simplifying $\sqrt{18}$ by using $\sqrt[3b] = \sqrt[3a] x \sqrt[3b]$ to split it into two different square roots, one of which is the square root of a square number
$$= 3\sqrt{2}$$
 Replacing $\sqrt[80]$ and $\sqrt{18}$ with fully simplified surds in the original expression
$$24\sqrt{100}$$

$$= 2 \times 4 \times 3 = 24$$
 and $\sqrt{10} \times \sqrt{5} \times \sqrt{2} = \sqrt{100}$

Answer
$$\underline{ 240}$$
 $\underline{ 100} = 10 \text{ then } 24 \times 10 = 240$

Turn over for the next question

9

27 A and B are similar solid cylinders.

base area of A : base area of B = 9 : 25 $\,$

Complete these ratios.

[2 marks]

curved surface area of A : curved surface area of B = 9 : 25

height of A : height of B = _____ : ____ 5

The ratio of the area is the same for all of the faces. Square rooting both sides of the ratio gives the ratio of the lengths and height is a length

28 Factorise fully $144 - 4x^2$

[2 marks]

(12+2x)(12-2x) (It can be factorised using difference of two squares: A² - B² = (A + B)(A - B)

Answer 4(6+x)(6-x)

It can be factorised further as 2 is a common factor to both terms in both brackets. Bringing out two 2s as factors gives 4 outsides the brackets

outside the box

The graph of $y = x^3 + 6$ is translated 4 units to the right. 29

The translated graph has equation y = f(x)

Work out f(x).

Give your answer in the form $x^3 + ax^2 + bx + c$ where a, b and c are integers.

[4 marks]

$$(x-4)(x-4)(x-4) \leftarrow$$

Subtracting 4 from all of the x translates it 4 to the right. Ignoring the +6 for now and writing out $(x - 4)^3$ $x^2 - 4x - 4x + 16$ Expanding out the first two brackets

$$x^2 - 4x - 4x + 16 \leftarrow$$

$$(x^2 - 8x + 16)(x - 4)$$

 $(x^2 - 8x + 16)(x - 4)$ Simplifying the expansion and writing it multiplied by the third bracket

$$x^3-4x^2-8x^2+32x+16x-64+6$$
 Expanding out these two brackets and now dealing with the +6 which was ignored earlier

END OF QUESTIONS