AQA

Please write clearly in block capitals.							
Centre number	Candidate number						
Surname							
Forename(s)							
Candidate signature							

GCSE MATHEMATICS

	•	I · ·	T	
Η	IIg	ner		ler

Paper 3 Calculator

Monday 12 November 2018

Morning

Time allowed: 1 hour 30 minutes

Materials

For this paper you must have:

- a calculator
- mathematical instruments.

Instructions

- Use black ink or black ball-point pen. Draw diagrams in pencil.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- Do all rough work in this book. Cross through any work you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 80.
- You may ask for more answer paper, graph paper and tracing paper. These must be tagged securely to this answer book.

Advice

In all calculations, show clearly how you work out your answer.

Please note that these worked solutions have neither been provided nor approved by AQA and may not necessarily constitute the only possible solutions. Please refer to the original mark schemes for full guidance.

Any writing in blue indicates what must be written in order to answer the questions and get the marks. The worked solutions have been designed to show the smallest amount of work which needs to be done to answer the question.

Anything written in green in a cloud doesn't have to be written in the exam.

Anything written in orange in a rectangle doesn't have to be written in the exam and is there to show what should be put into a calculator or measured using a ruler or protractor.

If you find any mistakes or have any requests or suggestions, please send an email to curtis@cgmaths.co.uk

IB/M/Nov18/8300/3H

4	Work out the lowe	st common mult	iple (LCM) of 20	, 30 and 40		Do not write outside the box
					[1 mar	' k]
	10	(1	20	240	24 000	
	This is t	he smallest num	ber listed which i	s a multiple of 20	, 30 and 40}	
5	The length of a tak	ole is 110 cm to	the nearest cm			
	Complete the erro	r interval.				
lio±¦z ∢	Adding and subt	racting half of th und. The resolut	ne resolution to the isolution is 1 cm as the	ne 110 cm works of the second	out the }	s]
		109.5	cm $≤$ length <	< 110.5	cm	
		Turn over f	or the next ques	stion		
						6
					Turn over	∟ r ►

A music festival has taken place each year from 2011

The table shows the number of people who attended each year.

Year	2011	2012	2013	2014	2015	2016	2017	2018
Number of people	350	583	906	1471	2023	2612	3251	3780

The festival organisers draw a time series graph to represent the data. The first four years have been plotted.

6

.CG Maths.

	10% is 1/10, which can be found by dividing 14000 by 10. This t 0 to give 1400. Multiplying 10% by 2 gives 20% so 1400 is mult	takes off
(a)	Complete the graph. [2 marks]	Do not wr outside th box
(b)	Use the graph to estimate the number of people who will attend the festival in 2019 [2 marks]	I
	Answer 4400	
	Turn over for the next question	
	Turn over	4

7
$$k = n^2 + 9n + 1$$

Mo says,
"k will be a prime number for all integer values of n from 1 to 9"
Show that Mo is wrong.
You must show that your value of k is not prime.
11,23,37,53,71,91,113,137,163+
Using table mode on the calculator. Set $f(x) = x^3 + 9x + 1$. Start: 1
End: 9. Step: 1. This lists out all of the values of k needed
Using the calculator to express each of the values of k as a product of prime factors. If it
9] = 7×13+
Et calculator to express each of the values of k as a product of prime factors. If it
it can be divided by both 7 and 13. Prime numbers are only divisible by themselves and 1

Do not write outside the box 8 Doug owes an amount of £600 He wants to pay off this amount in five months. He says, "Each month, I will pay back 20% of the amount I still owe." Show working to check if his method is correct. [3 marks] Subtracting the 20% from 100% expresses the percentage the amount still $600 \times \left(\frac{100-20}{100}\right)^{5} = 196.61 +$ owed decreases to each month. Putting this over 100 converts it into a fraction, which when multiplied by the ± 600 decreases it by 20%. Raising the $\frac{1}{2}$ fraction to the power of 5 as the £600 needs to be decreased by 20% 5 times No < £196.61 is still owed so the method is not correct Turn over for the next question 6 Turn over ►

π×0.9 ◀	Circumference o	$e = \pi x$ diameter. This works out that the f a circle with diameter 0.9 km is 9/10 π km				
$\frac{9}{10}\pi \div 2 = \frac{9}{20}\pi \checkmark$	Dividing this length of the ser	circumference by 2 works out that the arc micircle with diameter of 0.9 km is $9/20 \pi$ km				
0.9÷3 ←	Dividing the diameter of the larger semicircle by 3 works out that the diameter of each of the smaller semicircles is 0.3 km 3					
π×0.3 ←	Circumference = π x diameter. This works out that the circumference of a circle with diameter 0.3 km is 3/10 π km					
$\frac{3}{10}\pi \div 2 = \frac{3}{20}\pi \checkmark$	Dividing this length of the ser	circumference by 2 works out that the arc micircle with diameter of 0.3 km is $3/20 \pi$ km				
0.75×2+ <u>3</u> π;	×3+ <u>9</u> ∏ ←	Adding all of the lengths of each section of the track works out that the length of 1 lap is 4.3 km. The 0.75 km is multiplied by 2 as there are 2 of these. The $3/20 \pi$ km is multiplied by 3 as there are 3 of these				
305÷4.3 ←	Dividing the mir	imum length of the race by the length of that 70.4 laps are needed to do 305 km				
70.4	The number of l up to 71 will m	aps needs to be a whole number so rounding ean that the race will be more than 305 km				

15 A company makes two types of lampshade using fabric on wire frames.

Lampshade A

Fabric is used to make the curved surface of a cylinder. The cylinder has radius 8 cm and height 22 cm

Lampshade B

Fabric is used to make the four triangular faces of a pyramid.

Each triangular face has base 15 cm and perpendicular height 24 cm

.CG Maths.

Not drawn accurately

Do not write outside the box

					Do not write outside the box		
		Cost of fabric	£400 per square metre				
		Other costs for A	£3.50 per lampshade	-			
		Other costs for B	£7.50 per lampshade				
Work o	ut the ratio	cost of one lamos	nade A : cost of one lamosha	ide B			
Give yo	our answer ir	the form n : 1					
	Dividing a	Ill the lengths in cm by to be done to work of	y 100 converts them into me ut the area in square metres	tres. { easier }			
0.08×2 ←	Multiplying	g the radius of 0.08 m f the circle at the base	by 2 works out that the of the cylinder is 0.16 m				
π×0.16 ←	Circumfere	nce = π x diameter }					
<u>4</u> π×0.22 ←	Multiplyi works out the curved Th	ng the circumference that the curved surfac surface as a curved re e length is the circum	of the circle by the height of ce area of the cylinder is 0.11 ectangle. Area of rectangle = ference and the width is the	the cylinder m ² . Think of length x width. height			
0.IIX400 ←	Multiplying the curved surface area of the cylinder (which is the area of the fabric used in lampshade A) by the cost per square metre works out that the cost of the fabric for lampshade A is £44.23 to the nearest penny						
44.23+3.50=4	7.73 ← { [/] / _v	Adding the other costs vorks out that the tot	s for A to the cost of the fabr al cost of one lampshade A is	fic for A }			
<u> </u> 2×0.IS×0.24 ◀	Area of tria	angle = 1/2 x base x H vorks out that the are	neight. Using the base of 0.15 a of one of the triangular fac	5 m and the height } es of B is 0.018 m ²			
0.018×4	Multiplying of all 4 tr	the area of one trian iangular faces is 0.07	gle face of B by 4 works out 1 2 m². This is the area of the f	hat the area			
0.072×400 +	Multiplying works ou	the area of the fabric that the cost of the	for B by the cost per square fabric for lampshade B is £2	metres 8.80			
28.80+7.50=3	36.30 ← ^{[/}	Adding the other costs vorks out that the tota	s for B to the cost of the fabr al cost of one lampshade V is	£36.30			
47.73÷36.30 <	The ratio is	5 47.73 : 36.30. Dividir	ng both sides by 36.30 gets 1	on the right			
Answer <u>1.31</u> : <u>1</u>							
					5		

IB/M/Nov18/8300/3H

Frequency on a histogram is the area of each bar. Area of rectangle = base x height, so height = area of rectangle \div base. The base is the class width, which is the difference between the upper and lower bound of each interval. The height is the frequency density. $10 \le x < 15$ has a class width of 5 as 15 - 10 = 5. Dividing the frequency of 8 by this works out that the frequency density is 1.6. $15 \le x < 25$ has a class width of 10 as 25 - 15 = 10. Dividing the frequency of 24 by this works out that the frequency density is 2.4. $25 \le x < 40$ has a class width of 15 as 40 - 25 = 15. Dividing the frequency of 30 by this works out that the frequency density is 2.40 $\le x < 70$ has a class width of 30 as 70 - 40 = 30. Dividing the frequency of 39 by this works out that the frequency density is 1.3

G

Maths.

IB/M/Nov18/8300/3H

19 The length of a roll of ribbon is 30 metres, correct to the nearest half-metre. A piece of length 5.8 metres, correct to the nearest 10 centimetres, is cut from the roll.

Work out the maximum possible length of ribbon left on the roll.

[3 marks] The length on the roll needs to be the upper bound. Adding half $30 + \frac{0.5}{2} = 30.25 \iff$ of the resolution to the 30 works out that the upper bound is 30.25 m. The resolution is 0.5 as it is to the nearest half-metre ····· The length of the piece cut off needs to be the lower bound. Subtracting half of the resolution from the 5.8 works out that the lower bound is 5.8-0.1 5.75 m. The resolution is 0.1 as it is to the nearest 10 centimetres. There are 100 cm in 1 m so dividing the 10 cm by 100 converts it to 0.1 m ζ Subtracting the lower bound of the length of the piece cut of from the upper bound of ζ 30.25-5.75 • , the length on the roll works out the maximum possible length of ribbon left on the roll 24.5 Answer metres

Do not write outside the box

Do not write outside the box Curve P has equation $y = 2(x-1)^2 - 5$ 20 Curve Q is a reflection in the *y*-axis of curve P. Work out the equation of curve Q. Give your answer in the form $y = ax^2 + bx + c$ where *a*, *b* and *c* are integers. Lit is a reflection in the y-axis so flipping the sign of all the x Expanding out the square bracket by squaring the first term, doubling the product of the two terms, squaring the last term [3 marks] y=2(-x−1)²-5 ← $=2(x^{2}+2x+1)-5$ Answer $y = 2x^2 + 4x - 3$ Expanding out the bracket and subtracting the 5 \dots Turn over for the next question 6 Turn over ► .CG Maths.

26
$$f(x) = \frac{2x+3}{x-4}$$
Work out $f^{-1}(x)$

$$x = \frac{2y+3}{9+4}$$
(A marks)
$$x = \frac{2y+3}{9+4}$$
(A marks)
(

27	The line $y = 3x + p$ and the circle $x^2 + y^2 = 53$ intersect at points <i>A</i> and <i>B</i> . <i>p</i> is a positive integer.	Do not write outside the box
27 (a)	Show that the <i>x</i> -coordinates of points <i>A</i> and <i>B</i> satisfy the equation $10x^2 + 6px + p^2 - 53 = 0$	
$x^{*}+(3x)$	$(P)^2 = 53 \leftarrow (Substituting 3x + p for y in the second equation)$	\dots
$x^2 + 9x^3$	+6P ×+ P ² -53=0 • Expanding the square bracket by squaring the first term, doubling the of the two terms, squaring the last term. Subtracting 53 from both	sides
10x2+6	$P \propto + p^2 - 53 = 0$ (Collecting like terms)	

