

Please write clearly i	n block capitals.
Centre number	Candidate number
Surname	
Forename(s)	
Candidate signature	I declare this is my own work
	I declare this is my own work.

GCSE MATHEMATICS

Н

Higher Tier Paper 2 Calculator

Monday 3 June 2024

Morning

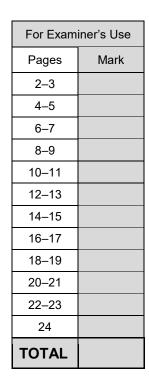
Time allowed: 1 hour 30 minutes

Materials

For this paper you must have:

- a calculator
- mathematical instruments
- the Formulae Sheet (enclosed).

Instructions


- Use black ink or black ball-point pen. Draw diagrams in pencil.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Do all rough work in this book. Cross through any work you do not want to be marked.

Information

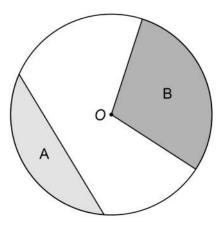
- The marks for questions are shown in brackets.
- The maximum mark for this paper is 80.
- You may ask for more answer paper, graph paper and tracing paper. These must be tagged securely to this answer book.

Advice

In all calculations, show clearly how you work out your answer.

Please note that these worked solutions have neither been provided nor approved by AQA and may not necessarily constitute the only possible solutions. Please refer to the original mark schemes for full guidance.

Any writing in blue should be written in the exam.


Anything written in green in a rectangle doesn't have to be written in the exam.

If you find any mistakes or have any requests or suggestions, please send an email to curtis@cgmaths.co.uk

.CG Maths.

Answer all questions in the spaces provided.

1 The diagram shows a circle, centre *O*, and three straight lines.

Use **one** word to describe each shaded region.

Choose from

arc	chord	sector	segment	tangent	
J 5	0		009	1519 5	

[2 marks]

Region A	segment	
Danian D	a a a ta r	
Region B	sector	

3 Do not write outside the 2 The mass of an iceberg is 2200000kg box This value is a 12% reduction from the original mass of the iceberg. Work out the original mass of the iceberg. Give your answer in standard form. [3 marks] 100 - 12 ← Subtracting 12% from the original 100% works out that it has decreased to 88% 2200000 ÷ 88 ← Dividing the mass of the iceberg by 88 works out that 1% of the original mass is 25000 kg Multiplying 1% of the original mass by 100 works out that 100% of the original mass is 2500000 kg 25000 × 100 ← 2.5×10^{6} Answer ↑
Formatting 2500000 in ENG notation using the calculator converts it into standard form in this case

Turn over for the next question

5

Turn over ►

3	A chef has	a tub of	blueberries.
J		a lub oi	DIUCDCITICS.

She wants to

use all the blueberries

put the same number of blueberries on each dessert.

$$D = \frac{k}{b}$$

D is the number of desserts.

b is the number of blueberries on each dessert.

3 (a) What does the constant k represent?

Tick the correct box.

[1 mark]

The number of blueberries in the tub

The number of desserts

The number of blueberries on each dessert

None of the above

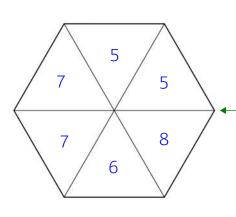
Dividing the number of blueberries in the tub (k) by the number of blueberries on each dessert (b) gives the number of desserts (D)

3 (b) Complete the table.

[2 marks]

b	2	6	8
D	120	40	30

D is inversely proportional to b so when b multiplies by 3 from 2 to 6, D must do the opposite so divide by 3 from 120 to 40. When D divides by 4 from 120 to 30, b must do the opposite by multiplying by 4 from 2 to 8


4 (a) A fair spinner has six equal sections, each with the number 5, 6, 7 or 8 Each number appears at least once.

P(even number) = P(7)

Work out P(5)

You may use the blank spinner to help you.

[3 marks]

If 5 appeared once, there would be five sections remaining for the other numbers. This is not possible as there needs to be the same number of even numbers and 7, and five does not divide by 2 to get a whole number.

If 5 appears twice, there would be four sections remaining for the other numbers. This works as then there are two sections for 7 and then two sections for the even numbers

2 out of the 6 sections are 5 so the probability of getting 5 is 2/6

4 (b) A different spinner has ten sections, each labelled A, B, C or D.

	A	В	С	D
Probability	0.1	0.5	0.2	0.3

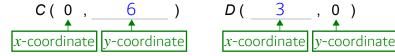
Give **one** reason why there **must** be a mistake in the table.

[1 mark]

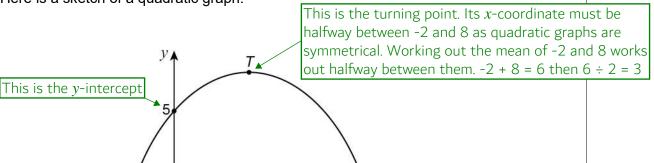
They do not add to $1 \leftarrow 0.1 + 0.5 + 0.2 + 0.3 = 1.1$. They must add to 1 as it is certain to get one of the letters and the probability of something which is certain is 1

7

Turn over ▶



5 (a) Here is a sketch of the graph y = -2x + 6



Complete the coordinates of C and D.

[2 marks]

5 (b) Here is a sketch of a quadratic graph.

Complete the following statements.

[2 marks]

The value of the y-intercept is 5

The *x***-coordinate** of the turning point, *T*, is ______3

6 Work out $(2.5 \times 10^4)^{-3}$

Give your answer in standard form.

[1 mark]

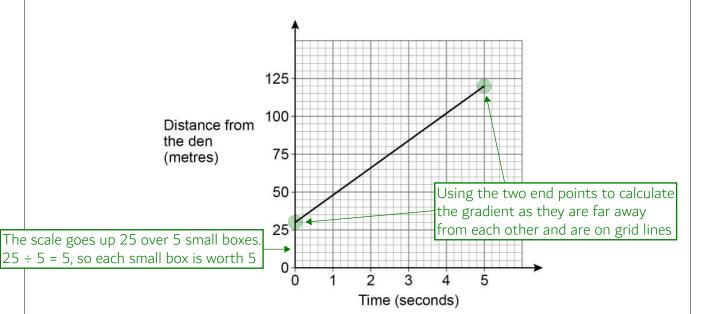
7 Archie flips a biased coin 200 times.

Here is some information about the outcomes after each 50 flips.

Total number of flips	50	100	150	200
Number of heads	10	27	37	52

Work out the best estimate for the probability of flipping a head.

Give a reason for your answer.


[2 marks]

52 out of the 200 flips were heads

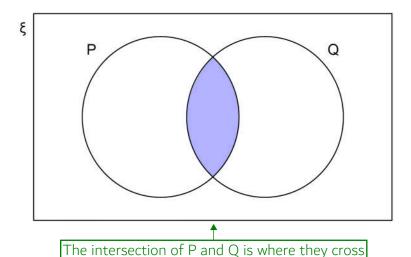
Reason More flips ← This makes it a better estimate of the probability

8 A lion is sprinting in a straight line away from its den.

The graph shows the lion's distance from the den.

Work out the speed of the lion in metres per second.

[3 marks]


The gradient on a distance-speed graph represents the speed. Gradient of a straight line =
$$\frac{120 - 30}{5 - 0}$$
 expresses the change in y . x changes from 0 to 5 so 5 - 0 expresses the change in x

Answer 18 m/s

On the Venn diagram, shade the section represented by 9 $P \cap Q$

[1 mark]

10 A bus route had 90 000 passengers last year.

The number of passengers was predicted to increase

by 3% this year

and then

by 8% next year.

Is the predicted number of passengers for next year more than 100 000? You must show your working.

[3 marks]

Multiplying 90000 by 1.03 increases it by 3% then multiplying the result by 1.08 increases it by 8%. To work $90000 \times 1.03 \times 1.08 = 100116$ —out the decimal multipliers: adding 3% to 100% gives 103%, which when divided by 100 gives 1.03 and adding 8% to 100% gives 108%, which when divided by 100 gives 1.08

Yes +

100116 is more than 100000

1 A	map has a scale o	of 1:20 000				Do no outsi b
Tv	wo churches are 1	5 cm apart on the	e map.			
W	ork out the actual	distance betweer	n them.			
Gi	ive your answer in	kilometres.			[2 manusa]	
5 × 20000	0 ← The 2000 15 cm by	0 is 20000 times 20000 works out	greater than the t that the actual c	1 so multiplyii listance is 300	ng the 000 cm [3 marks]	
00000 ÷ 1	100 ← There are	100 cm in 1 m s	o dividing the 300	0000 cm by 10	00 converts it into 3000) m
000 ÷ 100	00 ← There are	1000 m in 1 km	so dividing the 30	000 m by 1000	converts it into 3 km	
	Ans	swer	3		km	
2	Ans	swer		2 cm 17 cm	km Not drawn accurately	
2 C	12 cm	17 cm 9 cm	9 cm	2 cm	Not drawn	

same shape and size). This reason is SSS, which stands for side-side

13 Liam takes part in long jump competitions.

Here is some information about 40 of his jumps.

Length of jump, d metres	Number of jumps	Midpoint	
7.0 ≤ <i>d</i> < 7.4	15	7.2	108
7.4 ≤ <i>d</i> < 7.8	18	7.6 ← A	136.8 ←
7.8 ≤ <i>d</i> < 8.2	7	8	56
	Total = 40		300.8 ÷ 4

Work out an estimate of the mean distance of these 40 jumps.

Give your answer as a decimal.

[3 marks]

A: Working out the midpoints of the upper and lower bound of each interval. This could be done by doing the mean of the upper and lower bounds.

7.0 + 7.4 = 14.4 then 14.4 ÷ 2 = 7.2

7.4 + 7.8 = 15.2 then 15.2 ÷ 2 = 7.6

7.8 + 8.2 = 16 then $16 \div 2 = 8$

B: Multiplying the number of jumps by the midpoint of each interval works out an estimated total length for all of the jumps combined for each interval.

C: Adding all of the estimated totals gives an overall estimated total for all of the jumps combined. Dividing this by the 40 jumps estimates the mean

Answer 7.52 m

7

Turn over ▶

Do not	write
outside	the
has	,

- A graph passes through the points (3, 15) and (7, w)
- **14 (a)** Assume that the equation of the graph has the form $y = x^2 + c$

Work out the value of *w* that this would give.

[3 marks]

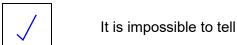
15 = $3^2 + c$ First using the point (3, 15) in the equation. Substituting 15 for y and 3 for x

$$c = 6$$
 Subtracting 3² from both sides finds that c is 6

$$w = 7^2 + 6$$
 Substituting w for y, 7 for x and 6 for c in the equation

$$w = 55$$

14 (b) In fact, the graph is a straight line.


What does this mean about the actual value of w?

Tick one box.

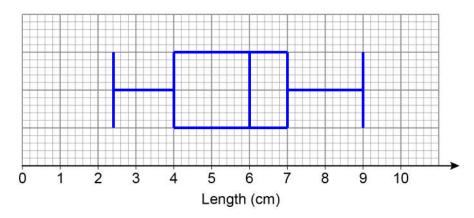
[1 mark]

It must be the same as the value in part (a)
It must be the same as the value in part (s
it must be the same as the value in part (a

It must be different to the value in part (a)

The straight line could have a steep positive gradient meaning that w could be greater than part (a). The straight line could have a shallow or even negative gradient meaning that w would be less than part (a). The straight line could possibly go through (3, 15) and (7, 55). So it is not possible to tell

15	Concrete from a truck is poured at 10.9 kg per second for 30 minutes.	Do not write outside the box
	1000 kg = 1 tonne	
	Is more than 20 tonnes of concrete poured?	
	Tick a box.	
	Yes No	
	You must show your working.	
10.9 × 6	There are 60 seconds in a minute so multiplying the 10.9 kg per second by 60 works out that 654 kg is poured in a minute [4 marks]	
654 × 3	Multiplying the 654 kg poured in a minute by 30 works out that 19620 kg is poured in 30 minutes	
19620 ÷	· 1000 ← 1000 kg = 1 tonne so dividing the 19620 kg by 1000 converts it into 19.62 tonne	s
19.62 +	19.62 tonnes is not more than 20 tonnes	

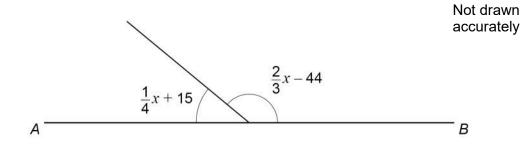


Turn over ▶

- Here is some information about the lengths, in cm, of leaves.
 - Shortest length = 2.4
 - Longest length = 9
 - Upper quartile = 7
 - Median length = 6
 - Interquartile range = 3

Draw a box plot to show this information.

[3 marks]



Drawing vertical lines for the shortest, lower quartile, median, upper quartile and longest then joining them up in a box plot. The lower quartile must be 4 in order for the interquartile range (the distance between the quartiles) to be 3

AB is a straight line.

Both angles are given in degrees.

By working out the value of x,

work out the ratio smaller angle: larger angle

[4 marks]

$$\frac{1}{4}x + 15 + \frac{2}{3}x - 44$$
 Adding both angles together

Simplifying by collecting like terms.
$$1/4 + 2/3 = 11/12$$
 so this is the coefficient of x . Angles around a point on a straight line add up to 180° so the expression of the sum of the angles must equal to 180°.

$$\frac{11}{12}x = 209$$
 Adding 29 to both sides to get the x term on its own

$$x = 228$$
 Dividing both sides by 11/12 gets x on its own

$$\frac{1}{4} \times 228 + 15 = 72$$
 Substituting 228 for x in the expression of the smaller angle finds that it is 72°

$$\frac{2}{3} \times 228 - 44 = 108$$
 Substituting 228 for x in the expression of the larger angle finds that it is 108°

Answer _______ : ______ 108

The ratio can be expressed without simplifying it

16 Do not write outside the 18 A diagonal of a rectangle is 23.7 cm long. box The diagonal makes an angle of 52° with a side of length x cmWork out the value of x. [3 marks] Drawing a diagram of the information given. It forms a right-angled triangle, which is highlighted in green Using right-angled trigonometry. Listing SOH CAH TOA as formula triangles. Ticking H as the hypotenuse is involved. Ticking A as the adjacent is involved. There are two ticks on the CAH formula triangle so this one can be used Covering A in the CAH formula triangle finds cos(52) × 23.7 ◆ that adjacent = cos of the angle × hypotenuse 14.6

Show that 19 (a)

$$4x(3x+2) - 2x^2\left(6-\frac{5}{x}\right) - 6x\left(3+\frac{7}{x}\right)$$

simplifies to an integer.

[3 marks]

$$12x^2 + 8x - 12x^2 + 10x - 18x - 42$$
 Expanding all three brackets

-42 Collecting like terms to simplify. The x^2 and x terms cancel out leaving -42, which is an integer

Factorise $8x^2 - 18x - 35$ 19 (b)

[2 marks]

 $8 \times -35 = -280$
It is in the form $ax^2 + bx + c$. Multiplying a by c to give -280

$$8x^2 + 10x - 28x - 35$$

 $8x^2 + 10x - 28x - 35$ +10 and -28 multiply to the -280 and add to b (which is -18). Splitting the middle x term into these numbers of x. Table mode could be used on the calculator to help find the two numbers. Enter f(x) = 280/x. Start: 1. End: 30. Step: 1. This lists out the factor pairs of 280 (ignoring the decimals)

$$2x(4x + 5) - 7(4x + 5)$$

2x(4x + 5) - 7(4x + 5) Factorising the left two terms and right two terms separately

$$(2x - 7)(4x + 5)$$

20

$$(x-9) = \frac{2(6-x^2)}{x+3}$$
 and $x = \frac{d \pm \sqrt{e}}{f}$

Do not write outside the box

Work out one set of possible values for d, e and f.

[4 marks]

$$(x - 9)(x + 3)$$

Multiplying both sides by x + 3 to eliminate the denominator on the right. Just writing the left side of the equation and ignoring the right side for now

$$x^2 + 3x - 9x - 27$$

Expanding the brackets

$$x^2 - 6x - 27 = 12 - 2x^2$$

Simplifying by collecting like terms. Now writing the right side of the equation. Expanding the $2(6 - x^2)$

$$3x^2 - 6x - 39 = 0$$

Bringing into the quadratic form $ax^2 + bx + c = 0$ by adding $2x^2$ to both sides and subtracting 12 from both sides

$$x = \frac{6 \pm \sqrt{(-6)^2 - 4 \times 3 \times -39}}{2 \times 3}$$

 $x = \frac{6 \pm \sqrt{(-6)^2 - 4 \times 3 \times -39}}{2 \times 3}$ $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ $x = \frac{a + b \pm \sqrt{b^2 - 4ac}}{2a}$ $x = \frac{a + b \pm \sqrt{b^2 - 4ac}}{2a}$ $x = \frac{a + b \pm \sqrt{b^2 - 4ac}}{2a}$ $x = \frac{a + b \pm \sqrt{b^2 - 4ac}}{2a}$ $x = \frac{a + b \pm \sqrt{b^2 - 4ac}}{2a}$ $x = \frac{a + b \pm \sqrt{b^2 - 4ac}}{2a}$ $x = \frac{a + b \pm \sqrt{b^2 - 4ac}}{2a}$ $x = \frac{a + b \pm \sqrt{b^2 - 4ac}}{2a}$

$$e = \frac{504}{(-6)^2 - 4 \times 3 \times -39} = 504$$

People in a stadium are in the North Stand, East Stand, South Stand or West Stand.

Of the people in the stadium,

 $\frac{1}{4}$ are in the North Stand

 $\frac{3}{10}$ are in the East Stand

number in South Stand: number in West Stand = 2:7

There are 4480 people in the West Stand.

How many people are in the stadium?

[4 marks]

The 4480 people in the West Stand is represented by 7 parts of the ratio 2 : 7. Dividing the 4480 by 7 works out that 1 part of the ratio is worth 640 people

2 + 7 = 9 parts in total in the ratio. Multiplying the value of 1 part of the ratio by 9 works out that there are 5760 people in the South and West Stand combined

$$\frac{1}{4} + \frac{3}{10}$$

Adding the fraction in the North Stand and the fraction in the East Stand works out that 11/20 of the people are in the North and East Stand combined

$$1 - \frac{11}{20}$$

Subtracting the 11/20 from 1 lot of people works out that 9/20 of the people are in the South and West Stand combined

$$\frac{9}{20}x = 5760$$

Let x be the total number of people in the stadium. 9/20 of the total number of people in the stadium is 5760, as these are both describing the number of people in the South and West Stand combined. Writing this as an equation

$$x = 5760 \div \frac{9}{20}$$

Dividing both sides by 9/20 gets x on its own so works out how many people are in the stadium

Answer

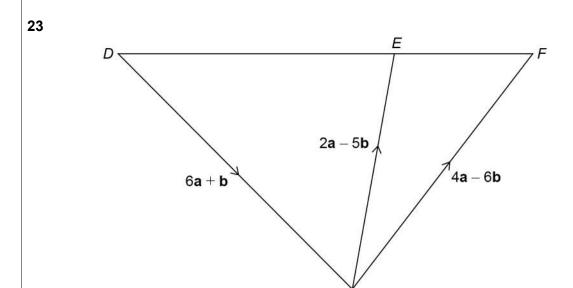
12800

Turn over for the next question

22

$$x_{n+1} = 5 - \frac{1}{x_n}$$

Use $x_1 = 1$ to work out an approximate solution to $x = 5 - \frac{1}{x}$ Give your answer to 4 significant figures.


[3 marks]

Do not write outside the

box

Press 1 then press = or exe. Enter 5 - 1/Ans and keep pressing = or exe until all of the digits on the display stop changing. This substitutes 1 for x_n in the right side of the formula then keeps substituting in the previous iteration of x_n to get the next iteration of x_{n+1} and keeps getting a more accurate approximate solution to the equation

Prove that *DEF* is a straight line.

[4 marks]

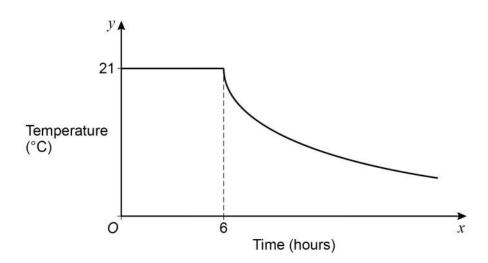
Not drawn

accurately

$$\overrightarrow{DE} = 6a + b + 2a - 5b$$
 $\overrightarrow{DE} = \overrightarrow{DC} + \overrightarrow{CE}$

$$= 8a - 4b$$
 Simplifying by collecting like terms
$$= 4(2a - b)$$
 Factorising

$$\overrightarrow{DF} = 6a + b + 4a - 6b$$
 $\overrightarrow{DF} = \overrightarrow{DC} + \overrightarrow{CF}$


$$= 10a - 5b$$
 Simplifying by collecting like terms
$$= 5(2a - b)$$
 Factorising

As they are both multiples of the same vector, 2a - b. DEF must be a straight line as both DE and DF are going in the same direction and both start at D

A room is kept at a constant temperature of 21°C for 6 hours.

The heating is then turned off and the room begins to cool.

Here is a sketch graph showing the temperature, $y^{\circ}C$, of the room at time x hours.

24 (a) Assume the equation of the curved part is $y = \frac{k}{x}$ where k is a constant.

Work out the value of y when x = 12

[2 marks]

 $21 = \frac{k}{6}$ (6, 21) is a known point on the curve. Substituting 21 for y and 6 for x in the equation

k = 126 Multiplying both sides by 6 gets k on its own and finds that k is 126

 $y = \frac{126}{12}$ Substituting 126 for k and 12 for x in the equation

24 (b) In fact.

the equation of the curved part is

 $y = A \times \left(\frac{1}{3}\right)^{\frac{1}{6}x}$ where A is a **different** constant.

How does this affect the value of y when x = 12?

Tick one box.

You **must** show working to support your answer.

[2 marks]

The value of *y* is greater than the answer to part (a).

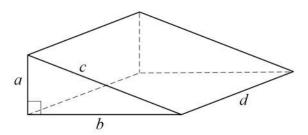
The value of y is less than the answer to part (a).

The value of y is the same as the answer to part (a).

$$A = \frac{21}{\left(\frac{1}{2}\right)^{\frac{1}{6} \times 6}} \blacktriangleleft$$

 $A = \frac{21}{\left(\frac{1}{3}\right)^{\frac{1}{6} \times 6}}$ Rearranged to make *A* the subject of the equation and substituted 21 for *y* and 6 for *x* to find that *A* is 63

$$y = 63 \times \left(\frac{1}{3}\right)^{\frac{1}{6} \times 12} \longleftarrow$$


 $y = 63 \times \left(\frac{1}{3}\right)^{\frac{1}{6} \times 12}$ Substituted 63 for A and 12 for x in the equation to find that y is 7

7 is less than 10.5

Turn over for the next question

25 Here is a right-angled triangular prism.

The ratio of the edges is a:b:c:d=3:4:5:12

The **volume** of the prism is 1125 cm³

Work out the total length of all of the edges of the prism.

[5 marks]

$$\frac{1}{2} \times 4p \times 3p \times 12p$$

Let p be 1 part of the ratio. a is 3p, b is 4p and d is 12p. Expressing $\frac{1}{2} \times 4p \times 3p \times 12p$ the volume of the prism. Volume of prism = area of cross section \times length d is the length. The cross section is a triangle. Area of imes length. d is the length. The cross section is a triangle. Area of triangle = $1/2 \times \text{base} \times \text{height}$. The base is b and the height is a

$$72p^3 = 1125$$

Simplifying the expression and setting it equal to the value of the volume

$$p^3 = 15.625$$

Dividing both sides by 72 to get p³ on its own

Cube rooting both sides finds that 1 part of the ratio is worth 2.5 cm

Working out that 60 parts of the ratio represent 3 + 3 + 4 + 4 + 5 + 5 + 12 + 12 + 12 the total length of all of the edges of the prism. There are 2 of *a*, 2 of *b*, 2 of *c* and 3 of *d*

cm

2.5 × 60 ←

Multiplying the value of 1 part of the ratio by the 60 parts which represent the total length of all of the edges of the prism works out that the total length of all of the edges of the prism is 150 cm

150 Answer

END OF QUESTIONS

